当前位置:首页 > 股票知识 > 正文

康普顿区域,康普顿股票公司简介

康普顿区域,康普顿股票公司简介

炒股太难?不知道如何入手?大众财富带你从零经验变为炒股大神,今天为各位分享《康普顿区域,康普顿股票公司简介》,是否对你有帮助呢?


康普顿区域,康普顿股票公司简介  第1张


本文主题为:康普顿区域,康普顿股票公司简介


文章概况:

  • 1927年第二届索维尔会议结果到底怎么样
  • 波粒二象性是什么?
  • 空间可不可能叠加?数学表达式
  • 无所不在的民用卫星表示什么?
  • 广州康普顿化工有限公司怎么样?
  • 康普顿是不是要倒闭了,怎么跌成这样了

  • 提问一:1927年第二届索维尔会议结果到底怎么样

    答案:索尔维会议是由一位比利时的实业家Ernest Solvay创立的,并以他的名字命名。第一届索
    尔维会议于1911年在布鲁塞尔召开,后来虽然一度被第一次世界大战所打断,但从1921年
    开始又重新恢复,定期3年举行一届。到了1927年,这已经是第五届索尔维会议了,也许,
    这也将是最著名的一次索尔维会议。
    这次会议弥补了科莫的遗憾,爱因斯坦,薛定谔等人都如约而至。目前流传得最广
    的那张“物理学全明星梦之队”的照片,就是这次会议的合影。当然世事无完美,硬要挑
    点缺陷,那就是索末菲和约尔当不在其中,不过我们要求不能太高了,人生不如意者还是
    十有八九的。
    这次会议从10月24日到29日,为期6天。主题是“电子和光子”(我们还记得,“光子
    -photon”是个新名词,它刚刚在1926年由美国人刘易斯所提出),会议议程如下:首先劳
    伦斯?布拉格作关于X射线的实验报告,然后康普顿报告康普顿实验以及其和经典电磁理论
    的不一致。接下来,德布罗意作量子新力学的演讲,主要是关于粒子的德布罗意波。随后
    波恩和海森堡介绍量子力学的矩阵理论,而薛定谔介绍波动力学。最后,玻尔在科莫演讲
    的基础上再次做那个关于量子公设和原子新理论的报告,进一步总结互补原理,给量子论
    打下整个哲学基础。这个议程本身简直就是量子论的一部微缩史,从中可以明显地分成三
    派:只关心实验结果的实验派:布拉格和康普顿;哥本哈根派:玻尔、波恩和海森堡;还
    有哥本哈根派的死敌:德布罗意,薛定谔,以及坐在台下的爱因斯坦。
    会议的气氛从一开始便是火热的,像拳王争霸赛一样,重头戏到来之前先有一系列的
    垫赛:大家先就康普顿的实验做了探讨,然后各人分成了泾渭分明的阵营,互相炮轰。德
    布罗意一马当先做了发言,他试图把粒子融合到波的图像里去,提出了一种“导波”(piv
    ot wave)的理论,认为粒子是波动方程的一个奇点,它必须受波的控制和引导。泡利站起
    来狠狠地批评这个理论,他首先不能容忍历史车轮倒转,回到一种传统图像中,然后他引
    了一系列实验结果来反驳德布罗意。众所周知,泡利是世界第一狙击手,谁要是被他盯上
    了多半是没有好下场的,德布罗意最后不得不公开声明放弃他的观点。幸好薛定谔大举来
    援,不过他还是坚持一个非常传统的解释,这连盟军德布罗意也觉得不大满意,泡利早就
    嘲笑薛定谔为“幼稚”。波恩和海森堡躲在哥本哈根掩体后面对其开火,他们在报告最后
    说:“我们主张,量子力学是一种完备的理论,它的基本物理假说和数学假设是不能进一
    步修改的。”他们也集中火力猛烈攻击了薛定谔的“电子云”,后者认为电子的确在空间
    中实际地如波般扩散开去。海森堡评论说:“我从薛定谔的计算中看不到任何东西可以证
    明事实如同他所希望的那样。”薛定谔承认他的计算确实还不太令人满意,不过他依然坚
    持,谈论电子的轨道是“胡扯”(应该是波本征态的叠加),波恩回敬道:“不,一点都不
    是胡扯。”在一片硝烟中,会议的组织者,老资格的洛伦兹也发表了一些保守的观点,an
    d so on and so on……
    爱因斯坦一开始按兵不动,保持着可怕的沉默,不过当波恩提到他的名字后,他终于
    忍不住出击了。他提出了一个模型:一个电子通过一个小孔得到衍射图像。爱因斯坦指出
    ,目前存在着两种观点,第一是说这里没有“一个电子”,只有“一团电子云”,它是一
    个空间中的实在,为德布罗意-薛定谔波所描述。第二是说的确有一个电子,而ψ是它的“
    几率分布”,电子本身不扩散到空中,而是它的几率波。爱因斯坦承认,观点II是比观点
    I更加完备的,因为它整个包含了观点I。尽管如此,爱因斯坦仍然说,他不得不反对观点
    II。因为这种随机性表明,同一个过程会产生许多不同的结果,而且这样一来,感应屏上
    的许多区域就要同时对电子的观测作出反应,这似乎暗示了一种超距作用,从而违背相对
    论。
    风云变幻,龙虎交济,现在两大阵营的幕后主将终于都走到台前,开始进行一场决定
    命运的单挑。可惜的是,玻尔等人的原始讨论记录没有官方资料保存下来,对当时情景的
    重建主要依靠几位当事人的回忆。这其中有玻尔本人1949年为庆祝爱因斯坦70岁生日而应
    邀撰写的《就原子物理学中的认识论提问与爱因斯坦进行的商榷》长文,有海森堡、德布
    罗意和埃仑菲斯特的回忆和信件等等。当时那一场激战,讨论的提问中有我们已经描述过
    的那个电子在双缝前的困境:如何选择它的路径以及快速地关闭/打开一条狭缝对电子产生
    的影响。还有许许多多别的思维实验。埃仑费斯特在写给他那些留守在莱登的弟子们(乌仑
    贝特和古德施密特等)的信中描述说:爱因斯坦像一个弹簧玩偶,每天早上都带着新的主意
    从盒子里弹出来,而玻尔则从云雾缭绕的哲学中找到工具,把对方所有的论据都一一碾碎

    海森堡1967年的回忆则说:
    “讨论很快就变成了一场爱因斯坦和玻尔之间的决斗:当时的原子理论在多大程度上
    可以看成是讨论了几十年的那些困难的最终答案呢?我们一般在旅馆用早餐时就见面了,
    于是爱因斯坦就描绘一个思维实验,他认为从中可以清楚地看出哥本哈根解释的内部矛盾
    。然后爱因斯坦,玻尔和我便一起走去会场,我就可以现场聆听这两个哲学态度迥异的人
    的讨论,我自己也常常在数学表达结构方面插几句话。在会议中间,尤其是会间休息的时
    候,我们这些年轻人--大多数是我和泡利--就试着分析爱因斯坦的实验,而在吃午饭的时
    候讨论又在玻尔和别的来自哥本哈根的人之间进行。一般来说玻尔在傍晚的时候就对这些
    理想实验完全心中有数了,他会在晚餐时把它们分析给爱因斯坦听。爱因斯坦对这些分析
    提不出反驳,但在心里他是不服气的。”
    爱因斯坦当然是不服气的,他如此虔诚地信仰因果律,以致决不能相信哥本哈根那种
    愤世嫉俗的概率解释。玻尔回忆说,爱因斯坦有一次嘲弄般地问他,难道他真的相信上帝
    的力量要依靠掷骰子(ob der liebe Gott würfelt)?
    上帝不掷骰子!这已经不是爱因斯坦第一次说这话了。早在1926年写给波恩的信里,
    他就说:“量子力学令人印象深刻,但是一种内在的声音告诉我它并不是真实的。这个理
    论产生了许多好的结果,可它并没有使我们更接近‘老头子’的奥秘。我毫无保留地相信
    ,‘老头子’是不掷骰子的。”
    “老头子”是爱因斯坦对上帝的昵称。
    然而,1927年这场华山论剑,爱因斯坦终究输了一招。并非剑术不精,实乃内力不足
    。面对浩浩荡荡的历史潮流,他顽强地逆流而上,结果被冲刷得站立不稳,苦苦支撑。19
    27年,量子革命的大爆发已经进入第三年,到了一个收官的阶段。当年种下的种子如今开
    花结果,革命的思潮已经席卷整个物理界,毫无保留地指明了未来的方向。越来越多的人
    终究领悟到了哥本哈根解释的核心奥义,并诚心皈依,都投在量子门下。爱因斯坦非但没
    能说服玻尔,反而常常被反驳得说不出话来,而且他这个“反动”态度引得了许多人扼腕
    叹息。遥想当年,1905,爱因斯坦横空出世,一年之内六次出手,每一役都打得天摇地动
    ,惊世骇俗,独自创下了一番轰轰烈烈的事业。当时少年意气,睥睨群雄,扬鞭策马,笑
    傲江湖,这一幅传奇画面在多少人心目中留下了永恒的神往!可是,当年那个最反叛,最
    革命,最不拘礼法,最蔑视权威的爱因斯坦,如今竟然站在新生量子论的对立面!
    波恩哀叹说:“我们失去了我们的领袖。”
    埃伦费斯特气得对爱因斯坦说:“爱因斯坦,我为你感到脸红!你把自己放到了和那
    些徒劳地想推翻相对论的人一样的位置上了。”
    爱因斯坦这一仗输得狼狈,玻尔看上去沉默驽钝,可是重剑无锋,大巧不工,在他一
    生中几乎没有输过哪一场认真的辩论。哥本哈根派和它对量子论的解释大获全胜,海森堡
    在写给家里的信中说:“我对结果感到非常满意,玻尔和我的观点被广泛接受了,至少没
    人提得出严格的反驳,即使爱因斯坦和薛定谔也不行。”多年后他又总结道:“刚开始(持
    有这种观点的)主要是玻尔,泡利和我,大概也只有我们三个,不过它很快就扩散开去了。

    但是爱因斯坦不是那种容易被打败的人,他逆风而立,一头乱发掩不住眼中的坚决。
    他身后还站着两位,一个是德布罗意,一个是薛定谔。三人吴带凌风,衣袂飘飘,在量子
    时代到来的曙光中,大有长铗寒瑟,易水萧萧,誓与经典理论共存亡的悲壮气慨。

    提问二:波粒二象性是什么?

    答案:

    光在运动的时候可以看成是由光子(粒子)组成的,有粒子性,同时它的运动是按波的方式传播的,有波动性。

    提问:拓展资料:

    波粒二象性是微观粒子的基本属性之一。指微观粒子有时显示出波动性(这时粒子性不显著),有时又显示出粒子性(这时波动性不显著),在不同条件下分别表现为波动和粒子的性质。一切微观粒子都具有波粒二象性。

    1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。

    在双缝实验里,从光源传播出来的相干光束,照射在一块刻有两条狭缝 和 的不透明挡板 。在挡板的后面,摆设了摄影胶卷或某种侦测屏 ,用来纪录到达 的任何位置 的光束。最右边黑白相间的条纹,显示出光束在侦测屏 的干涉图样。

    自从物理学者演示出光子与电子具有波动性质之后,对于中子、质子也完成了很多类似实验。在这些实验里,比较著名的是于1929年奥托·施特恩团队完成的氢、氦粒子束衍射实验,这实验精彩地演示出原子和分子的波动性质。

    提问三:空间可不可能叠加?数学表达式

    答案:70825805 简单来说就是,光在运动的时候可以看成是由光子(粒子)组成的,有粒子性,同时它的运动是按波的方式传播的,有波动性。
    更科学,更复杂的说法:
    波粒二象性
    第一个肯定光既有波动性又有微粒性的是爱因斯坦。他认为电磁辐射不仅在被发射和吸收时以能量hv的微粒形式出现,而且在空间运动时,也具有这种微粒形式。爱因斯坦这一光辉思想是在研究辐射的产生和转化时逐步形成的。与此同时,实验物理学家也相对独立地提出了同样的看法。其中有W.H.布拉格和A.H.康普顿(ArthurHollyCompton,1892—1962)。康普顿证明了,光子与电子在相互作用中不但有能量变换,还有一定的动量交换。
    1923年,德布罗意把爱因斯坦的波粒二象性推广到微观粒子,提出物质波假说,论证了微观粒子也具有波动性。他的观点不久就得到电子衍射等实验的证实。
    波粒二象性是人类对物质世界的认识的又一次飞跃,这一认识为波动力学的发展奠定了基础。
    §9.1 爱因斯坦的辐射理论
    早在1905年,爱因斯坦在他提出的光量子假说中,就隐含了波动性与粒子性是光的两种表现形式的思想。他分析了从牛顿和惠更斯以来,波动说和微粒说之间的长期争论,指出麦克斯韦电磁波理论的局限性,审查了普朗克处理黑体辐射的思路,总结了光和物质相互作用有关的各种现象,认为光在传播过程和与物质相互作用的过程中,能量不是分散的,而是一份一份地以能量子的形式出现的。
    1909年1月,爱因斯坦再次撰文讨论辐射提问,9月在萨尔茨堡举行的第81届德国物理学家和医学家会议上作了题为:《论我们关于辐射本质和组成的观点的发展》的演讲。他利用能量涨落的概念,考察一个挂在空腔中的完全反射性的镜子的运动,空腔中充有温度为T的热辐射。如果镜子是以一个非零的速度运动,则从它的正面反射出去的具有给定频率v的辐射要比从它的背面反射出去的多一些;因此镜子的运动将会受到阻尼,除非它从辐射涨落获得新的动量。爱因斯坦利用普朗克的能量分布公式,推导出体积V中频率在v→v+dv,之间的那一部分黑体辐射所具有的能量均方涨落为
    接着,爱因斯坦对上式两项分别作了说明。前一项正是能量子的涨落,它是以hν作为基数的。后一项具有从麦克斯韦理论求出的电磁场涨落的形式。前者代表粒子性,后者代表波动性。爱因斯宣称:“这些考虑……表明辐射的空间分布的涨落和辐射压的涨落也表现得好象辐射是由具有上述大小的量子所构成的一样。”他强调指出:“现代辐射理论(按:指麦克斯韦的光的波动理论)与这个结果并不一致。”“如果(第一项)单独存在,它就会导致(所期望的)涨落,这种涨落发生在辐射是由独立运动的、具有能量hν的类点量子组成的情况下”。爱因斯坦用“类点量子”一词表明他已把光量子当作粒子来看待。爱因斯坦虽然还没有形成完整的辐射理论,但他已经明确到,遵循普朗克能量分布公式的辐射,同时具有粒子和波动的特性。
    爱因斯坦在上述两篇论文中,对辐射理论的状况表示了如下的见解:
    “我早已打算表明,必须放弃辐射理论现有的基础”;“我认为,理论物理学发展的下一阶段将给我们带来一个光的理论,这个理论可以解释为波动理论与发射理论的熔合;”“不要把波动结构和量子结构……看成是互不相容的。”
    爱因斯坦在这里预见到了将有一种新的理论使波动性和微粒性熔合于一体,虽然十几年后,当新的理论真正出现时,他却反而不能接受。关于这个提问,请读者参看下一章。
    1916年爱因斯坦再次回到辐射提问上来,发表了《关于辐射的量子理论》一文,这篇论文总结了量子论的成果,指出旧量子论的主要缺陷,并运用统计方法,又一次论证了辐射的量子特性。
    他考虑的基本点是,分子的分立能态的稳定分布是靠分子与辐射不断进行能量交换来维持的。他假设能量交换的过程,即分子跃迁的过程有两种基本方式,一种叫自发辐射,一种叫受激辐射。根据这两种方式发生的几率,他推导出玻尔的频率定则和普朗克的能量分布公式。这样他就把前一阶段量子论的各项成果,统一在一个逻辑完备的整体之中。值得特别指出的是,爱因斯坦的受激辐射理论,为50年后激光的发展奠定了理论基础。
    爱因斯坦在这篇论文中,认为分子与辐射在相互作用的过程中,不仅有能量转移,也同时会发生动量转移。他假设在辐射束传播的方向上,
    了大小为hv/c的动量,这一动量具有确定的方向。他这样写道②:“看来,只有当我们把那些基元过程看作是完全有方向的过程,我们才能够得到一个贯彻一致的理论”。“因为能量和冲量总是最紧密地联系在一起”,所以“应当把那个小的作用(指冲量交换)和辐射所引起的明显的能量转移完全同等看待。”
    1921年,德拜在一次演讲中讨论到爱因斯坦的量子辐射理论。作为一个例题,他计算了光量子和电子相互碰撞的情况,结果显示光在碰撞后波长变长了。当时他曾建议他的同事舒勒(P.Scherrer)做一个X射线实验来检验波长是否真有改变。可惜舒勒没有及时做这个实验,德拜也就暂时放下这项研究。就在这段时间里,康普顿却一直在为X射线散射后波长变长的实验结果探求理论解释。在介绍康普顿的工作之前,还应当提到另一桩与波粒二象性有关的事件,这就是W.H.布拉格和巴克拉(C.G.Barkla)之间发生的关于X射线本性的争论。
    §9.2 X射线本性之争
    X射线的波动性是1912年德国人劳厄用晶体衍射实验发现的。在此之前,人们对X射线的本性众说纷纭。伦琴倾向于X射线可能是以太中的某种纵波,斯托克斯认为X射线可能是横向的以太脉冲。由于X射线可以使气体分子电离,J.J.汤姆生也认为是一种脉冲波。
    X射线是波还是粒子?是纵波还是横波?最有力的判据是干涉和衍射这一类现象到底是否存在。1899年哈加(Haga)和温德(Wind)用一个制作精良的三角形缝隙,放在X射线管面前,观察X射线在缝隙边缘是否形成衍射条纹。他们采用三角形缝隙的原因,一方面是出于无法预先知道产生衍射的条件,另一方面是因为在顶点附近便于测定像的展宽。他们从X射线的照片判断,如果X射线是波,其波长只能小于10-9厘米。这个实验后来经瓦尔特(Walter)和泡尔(Pohl)改进,得到的照片似乎有微弱的衍射图象。直到1912年,有人用光度计测量这一照片的光度分布,才看到真正的衍射现象。索末菲据此计算出X射线的有效波长大约为4×10-9厘米。
    X射线还有一种效应颇引人注目。当它照射到物质上时,会产生二次辐射。这一效应是1897年由塞格纳克(Sagnac)发现的。塞格纳克注意到,这种二次辐射是漫反射,比入射的X射线更容易吸收。这一发现为以后研究X射线的性质作了准备。1906年巴克拉在这个基础上判定X射线具有偏振性。巴克拉的实验原理如图9-1。从X射线管发出的X射线以45°角辐照在散射物A上,从A发出的二次辐射又以45°角投向散射物B,再从垂直于二次辐射的各个方向观察三次辐射,发现强度有很大变化。沿着既垂直于入射射线又垂直于二次辐射的方向强度最弱。由此巴克拉得出了X射线具有偏振性的结论。
    ■图9-1巴克拉X射线二次辐射实验原理
    但是偏振性还不足以判定X射线是波还是粒子。因为粒子也能解释这一现象,只要假设这种粒子具有旋转性就可以了。果然在1907—8年间一场关于X射线是波还是粒子的争论在巴克拉和布拉格之间展开了。布拉格根据γ射线能使原子电离,在电场和磁场中不受偏转以及穿透力极强等事实主张γ射线是由中性偶——电子和正电荷组成。后来他把X射线也一样看待,解释了已知的各种X射线现象。巴克拉则坚持X射线的波动性。两人各持己见,在科学期刊上展开了辩论,双方都有一些实验事实支持。这场争论虽然没有得出明确结论,但还是给科学界留下了深刻印象。
    1912年劳厄发现X射线衍射,对波动说提供了最有力的证据。布拉格这时已不再坚持他的中性偶假说。不过,他总是直觉地认为,就象他自己说的那样,似乎提问“不在于(微粒和波动)哪一种理论对,而是要找到一种理论,能够将这两方面包蓄并容。”①布拉格的思想对后来的德布罗意有一定影响。
    §9.3 康普顿效应
    在1923年5月的《物理评论》上,A.H.康普顿以《X射线受轻元素散射的量子理论》为题,发表了他所发现的效应,并用光量子假说作出解释。他写道②:
    “从量子论的观点看,可以假设:任一特殊的X射线量子不是被辐射器中所有电子散射,而是把它的全部能量耗于某个特殊的电子,这电子转过来又将射线向某一特殊的方向散射,这个方向与入射束成某个角度。辐射量子路径的弯折引起动量发生变化。结果,散射电子以一等于X射线动量变化的动量反冲。散射射线的能量等于入射射线的能量减去散射电子反冲的动能。由于散射射线应是一完整的量子,其频率也将和能量同比例地减小。因此,根据量子理论,我们可以期待散射射线的波长比入射射线大”,而“散射辐射的强度在原始X射线的前进方向要比反方向大,正如实验测得的那样。”
    康普顿用图9-2解释射线方向和强度的分布,根据能量守恒和动量守恒,考虑到相对论效应,得散射波长为:
    Δλ为入射波长λ0与散射波长λθ之差,h为普朗克常数,c为光速,m为电子的静止质量,θ为散射角。
    ■图9-2康普顿理论用图
    这一简单的推理对于现代物理学家来说早已成为普通常识,可是,康普顿却是得来不易的。这类现象的研究历经了一、二十年、才在1923年由康普顿得出正确结果,而康普顿自己也走了5年的弯路,这段历史从一个侧面说明了现代物理学产生和发展的不平坦历程。
    从(9-1)式可知,波长的改变决定于θ,与λ0无关,即对于某一角度,波长改变的绝对值是一定的。入射射线的波长越小,波长变化的相对值就越大。所以,康普顿效应对γ射线要比X射线显著。历史正是这样,早在1904年,英国物理学家伊夫(A.S.Eve)就在研究γ射线的吸收和散射性质时,首先发现了康普顿效应的迹象。他的装置如图9-3。图中辐射物和吸收物实际上是铁板铝板之类的材料,镭管发出γ射线,经散射物散射后投向静电计。在入射射线或散射射线的途中插一吸收物以检验其穿透力。伊夫发现,散射后的射线往往比入射射线要“软”些。
    后来,γ射线的散射提问经过多人研究,英国的弗罗兰斯(D.C.H.Florance)在1910年获得了明确结论,证明散射后的二次射线决定于散射角度,与散射物的材料无关,而且散射角越大,吸收系数也越大。所谓射线变软,实际上就是射线的波长变长,当时尚未判明γ射线的本质,只好根据实验现象来表示。
    ■图9-3伊夫(1904年)的装置
    1913年,麦克基尔大学的格雷(J.A.Gray)又重做γ射线实验,证实了弗罗兰斯的结论并进一步精确测量了射线强度。他发现:“单色的γ射线被散射后,性质会有所变化。散射角越大,散射射线就越软。”
    实验事实明确地摆在物理学家面前,可就是找不到正确的解释。
    1919年康普顿也接触到γ散射提问。他以精确的手段测定了γ射线的波长,确定了散射后波长变长的事实。后来,他又从γ射线散射转移到X射线散射。图9-4是康普顿自制的X射线分光计,钼的Kα线经石墨晶体散射后,用游离室进行测量不同方位的散射强度。图9-5是康谱顿发表的部分曲线。从图中可以看出,X射线散射曲线明显地有两个峰值,其中一个波长等于原始射线的波长(不变线),另一个波长变长(变线),变线对不变线的偏离随散射角变化,散射角越大,偏离也越大。
    ■图9-4康普顿的X射线分光计
    遗憾的是,康普顿为了解释这一现象,也和其他人一样,走了不少弯路。
    他开始是用J.J.汤姆生的电子散射理论解释γ射线和X射线的散射,后来又提出荧光辐射理论和大电子模型。他设想电子具有一定的大小和形状,认为只要“电子的电荷分布区域的半径与γ射线的波长大小可比拟”就可以“在经典电动力学的基础上解释高频辐射的散射。”他为了解释荧光辐射的频率变低,曾试图用多普勒效应进行计算,在计算中,他把X射线对散射物质中电子的作用看成是一个量子过程。开始他
    个条件,在碰撞中既要遵守能量守恒,又要遵守动量守恒,从而,导致了1923年5月在《物理评论》上发表了那篇有历史意义的文献。
    ■图9-5康普顿发表的部分曲线
    接着,德拜也发表了早已准备好的论文。他们两人的论文引起了强烈反响。然而,这一发现并没有立即被科学界普遍承认,一场激烈的争论迅即在康普顿和他的领导人之间展开。这件事发生在1922年以后,一份内有康普顿关于X射线散射的报告在交付出版之前,先要经美国研究委员会的物理科学部所属的一个委员会讨论。他是这个委员会的成员。可是,这个委员会的主席杜安(W.Duane)却极力反对把康普顿的工作写进去,认为实验结果不可靠。因为杜安的实验室也在做同样的实验,却得不到同样的结果。
    康普顿的学生,从中国赴美留学的吴有训对康普顿效应的进一步研究和检验有很大贡献,除了针对杜安的否定作了许多有说服力的实验外,还证实了康普顿效应的普遍性。他测试了多种元素对X射线的散射曲线,结果都满足康普顿的量子散射公式(9-1)。图9-6就是康普顿和吴
    有训1924年发表的曲线,论文题目是:《被轻元素散射时钼Kα线的波长》。①他们写道:“这张图的重要点在于:从各种材料所得之谱在性质上几乎完全一致。每种情况,不变线P都出现在与荧光M0Kα线(钼的Kα谱线)相同之处,而变线的峰值,则在允许的实验误差范围内,出现在上述的波长变化量子公式所预计的位置M上。”
    ■图9-5康普顿发表的部分曲线
    ■图9-6康普顿和吴有训1924年发表的曲线
    吴有训对康普顿效应最突出的贡献在于测定了x射线散射中变线、不变线的强度比率R随散射物原子序数变化的曲线,证实并发展了康普顿的量子散射理论。
    爱因斯坦在肯定康普顿效应中起了特别重要的作用。前面已经提到,1916年爱因斯坦进一步发展了光量子理论。根据他的建议,玻特和盖革(Geiger)也曾试图用实验检验经典理论和光量子理论谁对谁非,但没有成功。当1923年爱因斯坦获知康普顿实验的结果之后,他热忱地宣传和赞扬康普顿的实验,多次在会议和报刊上谈到它的重要意义。
    爱因斯坦还提醒物理学者注意:不要仅仅看到光的粒子性,康普顿在实验中正是依靠了X射线的波动性测量其波长。他在1924年4月20日的《柏林日报》副刊上发表题为《康普顿实验》的短文,有这样一句话:“……最最重要的提问,是要考虑把投射体的性质赋予光的粒子或光量子,究竟还应当走多远。”
    正是由于爱因斯坦等人的努力,光的波粒二象性迅速获得了广泛的承认。
    §9.4 德布罗意假说
    作为量子力学的前奏,路易斯·德布罗意的物质波理论有着特殊的重要性。
    德布罗意是法国物理学家,原来学的是历史,对科学也很有兴趣。第一次世界大战期间,在军队服役,从事无线电工作。平时爱读科学著作,特别是彭加勒、洛仑兹和朗之万的著作。后来对普朗克、爱因斯坦和玻尔的工作发生了兴趣,乃转而研究物理学。退伍后跟随朗之万攻读物理学博士学位。他的兄长莫里斯·德布罗意是一位研究X射线的专家,路易斯曾随莫里斯一道研究X射线,两人经常讨论有关的理论提问。莫里斯曾在1911年第一届索尔威会议上担任秘书,负责整理文件。这次会议的主题是关于辐射和量子论。会议文件对路易斯有很大启发。莫里斯和另一位X射线专家W.布拉格联系密切。布拉格曾主张过X射线的粒子性。这个观点对莫里斯很有影响,所以他经常跟弟弟讨论波和粒子的关系。这些条件促使德布罗意深入思考波粒二象性的提问。
    法国物理学家布里渊(M.Brillouin)在1919—1922年间发表过一系列论文,提出了一种能解释玻尔定态轨道原子模型的理论。他设想原子核周围的“以太”会因电子的运动激发一种波,这种波互相干涉,只有在电子轨道半径适当时才能形成环绕原子核的驻波,因而轨道半径是量子化的。这一见解被德布罗意吸收了,他把以太的概念去掉,把以太的波动性直接赋予电子本身,对原子理论进行深入探讨。
    1923年9月—10月间,德布罗意连续在《法国科学院通报》上发表了三篇有关波和量子的论文。第一篇题目是《辐射——波与量子》,提出实物粒子也有波粒二象性,认为与运动粒子相应的还有一正弦波,两者总保持相同的位相。后来他把这种假想的非物质波称为相波。他考虑一个静质量为m0的运动粒子的相对论效应,把相应的内在能量m0c2视为一种频率为ν0的简单周期性现象。他把相波概念应用到以闭合轨道绕核运动的电子,推出了玻尔量子化条件。在第三篇题为《量子气体运动理论以及费马原理》的论文中,他进一步提出,“只有满足位相波谐振,才是稳定的轨道。”在第二年的博士论文中,他更明确地写下了:“谐振条件是l=nλ,即电子轨道的周长是位相波波长的整数倍。”
    在第二篇题为《光学——光量子、衍射和干涉》的论文中,德布罗意提出如下设想:“在一定情形中,任一运动质点能够被衍射。穿过一个相当小的开孔的电子群会表现出衍射现象。正是在这一方面,有可能寻得我们观点的实验验证。”
    在这里要说明两点:第一点,德布罗意并没有明确提出物质波这一概念,他只是用位相波或相波的概念,认为这是一种假想的非物质波。可是究竟是一种什么波呢?在他的博士论文结尾处,他特别声明:“我特意将相波和周期现象说得比较含糊,就象光量子的定义一样,可以说只是一种解释,因此最好将这一理论看成是物理内容尚未说清楚的一种表达方式,而不能看成是最后定论的学说。”物质波是在薛定谔方程建立以后,在诠释波函数的物理意义时才由薛定谔提出的。第二点,德布罗意并没有明确提出波长λ和动量p之间的关系式:λ=h/P(h即Planck常数),只是后来人们发觉这一关系在他的论文中已经隐含了,就把这一关系称为德布罗意公式。
    德布罗意的博士论文得到了答辩委员会的高度评价,认为很有独创精神,但是人们总认为他的想法过于玄妙,没有认真地加以对待。例如:在答辩会上,有人提问有什么可以验证这一新的观念。德布罗意答道:“通过电子在晶体上的衍射实验,应当有可能观察到这种假定的波动的效应。”在他兄长的实验室中有一位实验物理学家道威利尔(Dauvillier)曾试图用阴极射线管做这样的实验,试了一试,没有成功,就放弃了。后来分析,可能是电子的速度不够大,当作靶子的云母晶体吸收了空中游离的电荷,如果实验者认真做下去,肯定会做出结果来的。
    德布罗意的论文发表后,当时并没有多大反应。后来引起人们注意是由于爱因斯坦的支持。朗之万曾将德布罗意的论文寄了一份给爱因斯坦,爱因斯坦看到后非常高兴。他没有想到,自己创立的有关光的波粒二象性观念,在德布罗意手里发展成如此丰富的内容,竟扩展到了运动粒子。当时爱因斯坦正在撰写有关量子统计的论文,于是就在其中加了一段介绍德布罗意工作的内容。他写道:“一个物质粒子或物质粒子系可以怎样用一个波场相对应,德布罗意先生已在一篇很值得注意的论文中指出了。”
    这样一来,德布罗意的工作立即获得大家注意。
    §9.5 物质波理论的实验验证
    上一节讲到,德布罗意曾设想,晶体对电子束的衍射实验,有可能观察到电子束的波动性。人们希望能够实现这一预见。耐人寻味的是,正在这个时候,有两个令人迷惑不解的实验结果也在等待理论上作出正确的解释。这两个实验就是下面要讲到的冉绍尔(C.W.Ramsauer)的电子-原子碰撞实验和戴维森(C.J.Davisson)的电子散射实验。
    1913年,德国物理学家冉绍尔发展了一种研究电子运动的实验方法,人称冉绍尔圆环法。用这种方法可以高度精确地确定慢电子的速度和能量。粒子间相互碰撞的有效截面概念就是冉绍尔首先提出来的。第一次世界大战后,冉绍尔继续用他的圆环法进行慢速电子与各种气体原子弹性碰撞的实验研究。1920年,他在题为:《气体分子对慢电子的截面》一文中报道了他发现氩气有特殊行为。
    实验装置如图9-7所示。
    冉绍尔在腔室中分别充以各种不同的气体,例如氢、氦、氮和氩。他经过多次测量,发现一般气体的截面“随电子速度减小均趋于常值,唯独氩的截面变得特别小”。由氩的这一反常行为,冉绍尔得出的结论是:“在这个现象中人们观察到最慢的电子对氩原子是自由渗透的。”
    图9-8是冉绍尔综合多人实验结果而作出的惰性气体Xe、Kr、Ar对电子的散射截面随电子速度变化的曲线,图中横坐标是与电子速度成正比的加速电压平方根值,纵坐标是散射截面Q,用原子单位,其中α0为玻尔原子半径。三种惰性气体的曲线具有大体相同的形状。约在电子能量为10eV时,Q达极大值,而后开始下降;当电子能量逐渐减小到1eV左右时,Q又出现极小值;能量再减小,Q值再度上升。事实确凿地证明,低能电子与原子的弹性碰撞是无法用经典理论解释的。
    ■图9-7冉绍尔圆环法
    ■9-8冉绍尔的实验结果
    这就是当年令人不解的冉绍尔效应。
    戴维森的电子散射实验比冉绍尔的电子碰撞实验更早得到奇特的结果。戴维森是美国西部电气公司工程部(即后来的贝尔电话实验室)的研究员,从事热电子发射和二次电子发射的研究。1921年,他和助手孔斯曼(Kunsman)在用电子束轰击镍靶时,发现从镍靶反射回来的二次电子有奇异的角度分布,其分布曲线如图9-9,出现了两个极大值。戴维森没有放过这一现象,反复试验,并撰文在1921年的《科学》(Science)杂志上进行了讨论①。他当时的看法是认为极大值的出现可能是电子壳层的象征,这一研究也许可以找到探测原子结构的又一途径。
    ■图9-9戴维森(1921年)发表的电子散射曲线
    这件事引起了德国著名物理学家玻恩(M.Born)的注意,他让一名叫洪德(F.Hund,后来是著名光谱学家)的研究生,根据戴维森的电子壳层假设重新计算电子散射曲线的极大极小值。在一次讨论班上洪德作了汇报,引起另一名研究生埃尔萨塞(W.Elsasser)的兴趣。埃尔萨塞的思想特别活跃,非常关心物理学各个领域的新进展,当他得知爱因斯坦和玻色(Bose)新近发表了量子统计理论,就想找到爱因斯坦的文章来阅读。爱因斯坦在文章中特别提到了德布罗意的物质波假说,使埃尔萨塞获得很大启发。不久,埃尔萨塞又读到了德布罗意给玻恩寄存来的论文。他的思想突然产生了一个飞跃,会不会戴维森和孔斯曼的极大极小值,就是电子波动性造成的?
    他迅即按德布罗意公式用计算尺估算了最大值所需的电子能量,发现数量级正确。几个星期之后,他写了一篇通讯给德文《自然科学》杂志,题为《关于自由电子的量子力学的说明》①。在这篇短文中,他特别提到用波动性的假说不但可以解释戴维森和孔斯曼的实验,还可以解释冉绍尔效应,在文章最后,他申明要取得定量验证,有待于他自己正在准备的进一步实验。他花了三个月的时间考虑实验方案,终因技术力量不足而放弃。
    戴维森从1921年起就没有间断电子散射实验,一直在研究电子轰击镍靶时出现的反常行为。他仍沿着电子壳层的方向进行研究,没有注意埃尔萨塞的论文。1925年,一次偶然的事故使他的工作获得了戏剧性的进展。有一天,他的助手革末(Germer)正准备给实验用的管子加热去气,真空系统的炭阱瓶突然破裂了,空气冲进了真空系统,镍靶严重氧化。过去也曾发生过类似事故,整个管子往往报废,这次戴维森决定采取修复的办法,在真空和氢气中加热,给阴极去气。经过两个月的折腾,又重新开始了正式试验。在这中间,奇迹出现了。1925年5月初,结果还和1921年所得差不多,可是5月中曲线发生特殊变化,出现了好几处尖锐的峰值,如图9-10所示。他们立即采取措施,将管子切开看看里面发生了什么变化。经公司一位显微镜专家的帮助,发现镍靶在修复的过程中发生了变化,原来磨得极光的镍表面,现在看来构成了一排大约十块明显的结晶面。他们断定散射曲线反常的原因就在于原子重新排列成晶体阵列。
    ■图9-10偶然事件(1925年)前后的对比
    这一结论促使戴维森和革末修改他们的实验计划。既然小的晶面排列很乱,无法进行系统的研究,他们就作了一块大的单晶镍,并切取一特定方向来做实验。他们事前并不熟悉这方面的工作,所以前后花了近一年的时间,才准备好新的镍靶和管子。有趣的是,他们为熟悉晶体结构做了很多X射线衍射实验,拍摄了很多X射线衍射照片,可就是没有将X射线衍射和他们正从事的电子衍射联系起来。他们设计了很精巧的实验装置,镍靶可沿入射束的轴线转360°,电子散射后的收集器也可以取不同角度,显然他们的目标已从探索原子结构,转向探索晶体结构。1926年继续做电子散射实验,然而结果并不理想,总得不到偶然事件之后的那种曲线。
    这时正值英国科学促进会在牛津开会。戴维森参加了会议。在1926年8月10日的会议上,他听到了著名的德国物理学家玻恩讲到,“截维森和康斯曼……从金属表面反射的实验”是德布罗意波动理论所预言的电子衍射的“证据”。戴维森没有想到自己三年前的实验竟有这样重要的意义。

    提问四:无所不在的民用卫星表示什么?

    答案:

    宇宙探测器——天文卫星

    传统的天文观测都是在地面上由天文台利用各种仪器进行观测。由于天体发出的绝大部分电磁辐射被地球的大气遮挡了,只有一小部分能够到达地面,所以在地面用光学天文望远镜或者射电天文望远镜所能观测的宇宙只是很小、很不完整的一部分,不能完整地了解宇宙的真面貌。

    天文卫星人造地球卫星问世使天文观测发生了革命性飞跃,因为它是在几百至几千千米高度的地球大气层外飞行,在那里没有大气的遮挡,可在全波段范围内对宇宙空间进行观测。天文卫星的出现,促进了一门新兴的学科——空间天文学的形成,它是人类进一步探测和了解宇宙空间的有效的手段。

    天文卫星上装有各种不同的探测仪器,与其他卫星相比,它有自己的特点。

    指向精度高。由于天文卫星要在茫茫的宇宙空间中找到要观测的天体目标,而且观测仪器设备必须始终指向这个天体,因此这就要求天文卫星有极为精确的指向精度和姿态控制精度,所以,天文卫星一般用太阳或者恒星作为指向的基准。

    结构要求高。由于指向精度要求很高,因此对卫星结构的要求也很严格,必须保证卫星结构有很高的装配精度和良好的稳定性,尤其在受热的情况下变形要极小,这样才能保证指向精度。

    观测仪器复杂。天文卫星上装有高精度的观测仪器设备,如红外线、紫外线、X射线和可见光天文望远镜。它们不但结构复杂,制作困难,而且有的还需要在超低温的状态下才能可靠工作,所以要采取复杂的制冷措施。另外,天文卫星的观测数据量特别大,需要用卫星上的计算机进行数据处理和操作控制。

    现已研制出各种天文卫星。按照观测的目标不同可以分为两大类:以观测太阳为主的太阳观测卫星和以探测太阳系以外的天体为主的非太阳探测天文卫星。世界上第一个天文卫星是美国1960年发射的“太阳辐射监测卫星”,它主要探测太阳的紫外辐射和X射线。美国从1962年开始发射的专门观测太阳的“轨道太阳观测台”,也属于太阳观测卫星。欧洲近年发射的“太阳和日球层观测台”(SOHO,简称“太阳观测卫星”),在观测太阳方面取得了大量新成果。

    已发射的非太阳探测天文卫星也不少,例如,目前在轨飞行的“哈勃”空间望远镜、“钱德拉”X射线望远镜等都是。它们的主要任务是探测宇宙间的紫外线、X射线、γ射线的发射源,测定它们的方向、强度、辐射谱特性等,并且探测恒星、星云、星际物质、银河系以及银河系以外的天体。

    如果以天文卫星装载的科学仪器的主要观测波段来分类,天文卫星又可以分为红外天文卫星、紫外天文卫星、X射线天文卫星、γ射线天文卫星等。它们都有专门的用途,探测不同的射线特性。如美国1968年和1972年发射的“轨道天文台”是最早专门用于紫外线观测的天文卫星;1970年发射的“小型天文卫星”则是专门探测X射线的天文卫星。从20世纪90年代起,美国开始实施“大观测计划”,即发射4个大型天文卫星,它们可以进行全波段观测。目前,已发射了其中的3颗卫星,即“哈勃”空间望远镜、“康普顿”γ射线观测台、“钱德拉”X射线空间望远镜,红外空间望远镜也即将发射。它们是当代最先进的天文卫星,已经取得了巨大的成就。例如,通过“哈勃”空间望远镜,大大地增进了人类对宇宙大小和年龄的了解;证明某些宇宙星系中央存在超高质量的黑洞;探测到宇宙诞生早期的“原始星系”,使天文学家有可能跟踪宇宙发展的历史;清楚地展现了银河系中类星体这种最明亮的天体存在的环境;发现木卫二、木卫三的大气层中存在氧气;拍摄到第一幅太阳系外的行星图像。“康普顿”γ射线观测台把宇宙射线的观察范围扩大了300倍,它曾观测了银河系中喷射出来的反物质粒子云,在天文界引起轰动。“钱德拉”X射线空间望远镜发现宇宙中有大约7000个X射线源。

    目前世界上已经发射了许多各种用途的天文卫星。随着天文探测的不断发展,更加先进的天文卫星会越来越多。

    科学卫星

    科学探测卫星,是用来进行空间物理环境探测的卫星。它携带着各种仪器,穿行于大气层和外层空间,收集来自空间的各种信息,使人们对宇宙有了更深的了解,为人类进入太空、利用太空提供了十分宝贵的资料。世界各国最初发射的卫星多是这类卫星或是技术试验卫星。

    美国发射的第一颗卫星“探险者”号就是一颗科学探测卫星,以后“探险者”发展成一个科学卫星系列,它们主要用于探测地球大气层和电离层;测量地球高空磁场;测量太阳辐射、太阳风;探测行星际空间等。“探险者”号卫星系列多为小型卫星,但其外形结构差别很大,由于探测的空间区域不同,它们的运行轨道有高有低、有远有近,差别也很大。

    “电子”号卫星是前苏联的科学卫星系列,星上装有高、低灵敏度的磁强计、低能粒子分析器、质子检测器、太阳X射线计数器以及研究宇宙辐射成分的仪器等。该系列卫星的主要任务是研究进入地球内、外辐射带的粒子以及相关的各种空间物理现象。

    中国的“实践”系列卫星既是技术实验卫星,又是科学探测卫星。“实践1”号卫星装有红外地平仪、太阳角计等探测仪器,取得了许多环境数据。“实践2”号和“2”号甲、“2”号乙是用一枚火箭同时发射的三颗卫星。其中“实践2”号外形为八面棱柱体,任务是探测空间环境,试验太阳电池阵对日定向姿态控制和大容量数据存储等新技术。

    天文卫星也是一种科学卫星,它专门对各种天体和其他空间物质进行科学观测。天文卫星在离地面几百千米或更高的轨道上运行,由于没有大气层的阻挡,星上仪器可以接收来自其他天体的各波段电磁波辐射,能够更好地观测宇宙空间。

    天文卫星的轨道多数为圆形或近圆形、高度为几百千米,但一般不低于四百千米。这是因为太阳系以外的天体离地球极远,再增加轨道高度也不能缩短相互间的距离,改善观测能力;而轨道太低时,大气密度增加,卫星也难以长时期运行。

    通信卫星

    无线电通信中继站的人造地球卫星。通信卫星反射或转发无线电信号,实现卫星通信地球站之间或地球站与航天器之间的通信。通信卫星是各类卫星通信系统或卫星广播系统的空间部分。一颗静止轨道通信卫星大约能够覆盖地球表面的40%,使覆盖区内的任何地面、海上、空中的通信站能同时相互通信。在赤道上空等间隔分布的3颗静止通信卫星可以实现除两极部分地区外的全球通信。

    1958年12月美国发射世界上第一颗试验通信卫星。1963年美国和日本通过“中继1”号卫星第一次进行了横跨太平洋的电视传输。中国于1984年4月8日发射了一颗地球静止轨道试验通信卫星。通信卫星按轨道分为静止通信卫星和非静止通信卫星;按服务区域不同可分为国际通信卫星和区域通信卫星或国内通信卫星;按用途可分为专用通信卫星和多用途通信卫星,前者如电视广播卫星、军用通信卫星、海事通信卫星、跟踪和数据中继卫星等,后者如军民合用的通信卫星,兼有通信、气象和广播功能的多用途卫星等。

    作为无线电通信中继站。通信卫星像一个国际信使,收集来自地面的各种“信件”,然后再“投递”到另一个地方的用户手里。由于它是“站”在36000千米的高空,所以它的“投递”覆盖面特别大,一颗卫星就可以负责1/3地球表面的通信。如果在地球静止轨道上均匀地放置3颗通信卫星,便可以实现除南北极之外的全球通信。当卫星接收到从一个地面站发来的微弱无线电信号后,会自动把它变成大功率信号,然后发到另一个地面站,或传送到另一颗通信卫星上后,再发到地球另一侧的地面站上,这样,我们就收到了从很远的地方发出的信号。

    通信卫星一般采用地球静止轨道,这条轨道位于地球赤道上空35786千米处。卫星在这条轨道上以3075米/秒的速度自西向东绕地球旋转,绕地球一周的时间为23小时56分4秒,恰与地球自转一周的时间相等。因此从地面上看,卫星像挂在天上不动,这就使地面接收站的工作方便多了。接收站的天线可以固定对准卫星,昼夜不间断地进行通信,不必像跟踪那些移动不定的卫星一样四处“晃动”,使通信时信号时断时续。现在,通信卫星已承担了全部洲际通信业务和电视传输。

    通信卫星是世界上应用最早、应用最广的卫星之一,许多国家都发射了通信卫星。

    1965年4月6日美国成功发射了世界第一颗实用静止轨道通信卫星:“国际通信卫星1”号。到目前为止,该型卫星已发展到了第八代,每一代都在体积、重量、技术性、通信能力、卫星寿命等方面有一定提高。

    前苏联的通信卫星命名为“闪电”号。包括“闪电1、2、3”号等。由于前苏联国土辽阔,“闪电”号卫星大多数不在静止轨道上,而在一条偏心率很大的椭圆轨道上。

    中国的第一颗静止轨道通信卫星是1984年4月8日发射的,命名为“东方红2”号,至今已发射成功了5颗。这些卫星先后承担了广播、电视信号传输,远程通讯等工作,为国民经济建设发挥了巨大作用。

    气象卫星

    气象卫星起源于侦察卫星,是一种专门用来对地球和大气进行观测的卫星。1960年4月1日,美国发射了世界上第一颗气象卫星,率先将航天科技引入气象科学领域。它向美国提供世界范围的气象资料。前苏联应用气象卫星也较早,它的第一颗实用气象卫星是在1966年6月发射的。

    气象卫星上通常装备有电视摄像系统、扫描辐射装置、自动图片传输系统和自动贮存装置等仪器设备。利用这些仪器,可对全球气象进行观测,以获得各地大气的温度、湿度、压力、密度、大气结构等信息。

    当气象卫星在预定的轨道上运行时,其电视摄像系统的摄像机,每隔一定时间开启一次快门,便得到一张地球大气云图照片。然后通过转换设备,卫星将云图照片的图像信息转化成电信号送进储存装置自动存贮起来。它的存储装置可以容纳世界各地的全部云图信息。当卫星经过地面接收站时,地面上给它发出一条指令,卫星就把全部信息传送下来。如果不用存储器,卫星还可以将无线电信号立即向地面传送。地面只要有接收设备,就可立即收到卫星实时拍摄的照片。任何物体都具有一定的温度而放出一定的热量,卫星上的扫描辐射装置测量出云的热辐射量,就得到红外云图。红外云图可反映地面和云顶的温度。大气温度一般比地面低,不同高度的云层温度也不同,因此它们的热辐射量就有强弱之分。在卫星红外云图照片上,白的地方是冷区,就是中高云区。黑的地方是暖区,是地面、水面或低云区。扫描辐射装置和电视摄像机拍摄图片的方式也是不同的。它是用扫描镜以固定转速向地球扫描,每转一圈,就得到从地球一端到另一端的一长条扫描线。卫星不断前进时,一条条扫描线互相衔接,就构成一张完整的红外云图。

    1974年5月17日美国发射了第一颗同步气象卫星,与其他系列的气象卫星相比,它的覆盖面积大,能及时提供大量的气象资料,昼夜向地面传输整个西半球的分辨率极高的气象照片。它每半小时就传输一次观测资料,利用这些资料可深入了解大气动力学过程和能量交换过程,改善了气象预报的准确性。世界各地有500多个接收站的自动图像装置也可直接接收卫星照片。

    虽然对地静止或同步气象卫星覆盖面积大,但不能覆盖地球南北极地区,因此像前苏联这样的地临北极的国家发射了另一种极轨气象卫星,或者太阳同步轨道低轨道气象卫星,高度一般在700~1500千米。这是一种具有轨道倾角约90度,飞越地球南北极上空的气象卫星。大家知道地球并非标准圆球体,而是在其赤道部分有些微微膨胀的扁球体,膨胀部分对人造天体产生额外吸引力,能使卫星运行的轨道面慢慢转动,轨道面转动速度的大小与轨道倾角、高度和形状有关,倾角越小转动越快。倾角为99度,高度为920千米的近极地圆轨道,轨道平面每天顺地球自转方向转动1度,与太阳照射方向因地球绕太阳公转每天顺向转动1度恰好同步,或说轨道面转动方向和周期与地球公转方向和周期相等的轨道叫做太阳同步轨道。太阳同步轨道的优点是轨道面和太阳方向所成的夹角大体上是一定的。所以在太阳同步轨道上运行的气象卫星,每天在相同的时间里大体上通过同一地球纬度;就是说,太阳同步轨道能使气象卫星始终在同样的光照条件下观测地面,给光学传感器创造了最合适的光照条件。但另一方面,极轨气象卫星的轨道倾角在90度附近而不能利用因地球自转产生的向东速度,发射时要求运载火箭有更大的负担。我国发射的“风云1”号气象卫星,也是太阳同步轨道卫星。

    由于利用气象卫星可以收集到地面气象台站难以收集,气球和飞机不能获得的高空、超高空气象情况,大大提高了天气预报的准确性和实时性。电视节目中,每天播放“天气预报”的同时,还展现一幅幅色彩斑斓的卫星云图照片,它们就是气象卫星用电视摄像机和扫描辐射装置从太空对地球拍摄而成的。这种每日天气预报给每一个人带来很大方便,对农业、运输业的作用更是巨大。运行在宇宙空间的各种各样的气象卫星,时刻监视着台风、强暴风、暴雨以及干旱等灾害性天气的变化;它们不受地理条件限制,可以取得人迹稀少的海面、极地、高原、沙漠、森林等地区的气象资料,更能进一步帮助监视危害性天气。随着微波雷达在气象卫星上获得应用以及大气遥感技术和大气科学的发展,气象卫星已经从定性的云图探测,逐步向定量探测大气温度、湿度、风速、云量、降水量、海面湿度以及大气成分等方面发展,这在提高中长期天气预报准确性方面会发挥更大作用。

    世界气象组织为了更好地全面掌握全球天气变化,组织了一个全球气象卫星网并投入运行。该系统由5颗地球同步轨道气象卫星和2颗太阳同步轨道气象卫星组成。5颗对地静止气象卫星,每颗能对南北纬度±50度和间隔经度70度的近圆形地区进行观测,它们分别由美国提供2颗,前苏联、欧空局和日本各提供l颗。极地轨道上两颗气象卫星是用来弥补5颗对地静止气象卫星无法覆盖地球两极地区的缺陷而发射的,分别由美、苏各提供一颗。这个纵横交错的气象卫星网可以连续监视全球任何一个地区的气象变化。世界各国都可以借助简单的接收设备免费接收卫星发回的云图,提高天气预报的及时性与准确性。

    海洋卫星

    人类居住的地球,其表面大部分为海洋,约占整个地球表面积的71%。它变化无常,对人类活动的影响是非常巨大的。对海洋进行深入了解和认识一直是科学家们迫切的愿望。然而,海洋上观测条件比陆地上要困难得多,利用船舶测量的经典的海洋学观测方法有很大的局限性,严重妨碍了对海洋现象,特别是海洋动力学现象的观测。只有对海洋多变的状态作连续和实时的观测,才有可能使人类及时掌握海洋动力学数据,认识海洋,开发和利用海洋。

    装备光学成像设备和能探测海洋电磁辐射,及其在不同状态下的海面的反射、散射等特性的微波设备的海洋卫星,不仅能测得海洋水面的图像,还能获知海水温度,海面风速、风向,海面波浪高度,海面的洋流、海貌等数据。

    根据卫星轨道运行特点,海洋卫星能在短时间内提供大面积的,乃至全球性的海洋数据,从而使其成为观察海洋学、特别是海洋动力学现象的最强有力的工具。海洋卫星还能预测海洋总的环流,概略监视和预测海洋表面的动力学现象,改善全球天气预报和全球水准面的精度。

    海洋卫星一般装备5种遥感器,即雷达测高仪、微波散射计、综合孔径雷达、微波辐射计、可见光和红外辐射计。雷达测高仪有两项功能:其一是测量卫星到星下点海面的距离,为测量海洋水准面提供数据。测距精度可达±10厘米;其二是测量海面的粗糙度,以便获得1~20米范围内的波浪高度信息,精度为波高的10%。海底地震引起海啸,传播速度很快,常常会给岸边和海上船舶造成巨大灾害。雷达测高计能够测量海啸波的高度和分布,确定海啸传播方向,对即将被袭击地区发出预警。

    综合孔径雷达,可以获得海洋的图像,从这些图像可以提取海洋的波形图和海洋动力学特性。雷达能发射波长为50~1000米的海水波图像。这种成像雷达波可以穿过云层,风雨无阻,昼夜都能进行工作。它能提供靠近海岸线的波浪图、矿物沉淀和其他类似特征的高分辨率图像,测量它们的面积。还能测绘冰原、油污等污染范围。它还能以25米的分辨率确定鱼群和测绘海流图。

    微波风场散射计也是一部有源雷达,是一种长脉冲雷达。它可测量全球范围内任何方向的风场,测量风速范围为3~25米/秒。散射计的地面覆盖范围是离星下点两侧约235千米对称的一条宽带。

    微波辐射计是一种扫描多频率无源微波遥感器,能感测海洋表面微波辐射的强度,或表面辐射微波亮度温度。亮度温度是物质发射率、电解性质和粗糙度的函数。这种微波辐射计能探测大于50米/秒速度的海面风的振幅;能检测2摄氏度~35摄氏度范围内的海水表面温度;测量超过10~15千米面积的海上浮冰分布;测量大气中的水蒸气、海岸特征等。扫描微波辐射计天线从卫星上垂直地面作±35度范围内扫描,相当于以星下点为中心约1000千米的地面覆盖范围。微波辐射计为散射计、雷达测高计提供重要的大气校正数据。

    扫描可见光和红外辐射计是辅助测量设备,提供海洋海岸、大气特性的可见光和热红外图像,帮助识别海流、暴风雨、海洋冰、云层、岛屿等。它使用360度的扫描,监视星下1800千米宽的覆盖带。

    海洋卫星给人类创造的物质利益是巨大的。它能提供实时的或近实时的环境条件数据,能使海上和岸边生命保护、岸边建设、船舶设计制造、捕鱼、海上作业等的工程设计更加合理和经济。

    资源卫星

    用于勘测和研究地球自然资源的卫星。它能“看透”地层,发现人们肉眼看不到的地下宝藏、历史古迹、地层结构,能普查农作物、森林、海洋、空气等资源,预报各种严重的自然灾害。

    资源卫星利用星上装载的多光谱遥感设备,获取地面物体辐射或反射的多种波段电磁波信息,然后把这些信息发送给地面站。由于每种物体在不同光谱频段下的反射不一样,地面站接收到卫星信号后,便根据所掌握的各类物质的波谱特性,对这些信息进行处理、判读,从而得到各类资源的特征、分布和状态等详细资料,人们就可以免去四处奔波,实地勘测的辛苦了。

    资源卫星分为两类:一是陆地资源卫星,二是海洋资源卫星。陆地资源卫星以陆地勘测为主,而海洋资源卫星主要是寻找海洋资源。

    资源卫星一般采用太阳同步轨道运行,这能使卫星的轨道面每天顺地球自转方向转动1度,与地球绕太阳公转每天约1度的距离基本相等。这样既可以使卫星对地球的任何地点都能观测,又能使卫星在每天的同一时刻飞临某个地区,实现定时勘测。

    世界上第一颗陆地资源卫星是美国1972年7月23日发射的,名为“陆地卫星1”号。它采用近圆形太阳同步轨道,距地球920千米高,每天绕地球14圈。卫星上的摄像设备不断地拍下地球表面的情况,每幅图像可覆盖地面近两万平方千米,是航空摄影的140倍。

    世界上第一颗海洋资源卫星也是美国于1978年6月发射的,名为“海洋卫星1”号。它装备有各种遥测设备,可在各种天气里观察海水特征,测绘航线,寻找鱼群,测量海浪、海风等。

    电视直播卫星

    电视直播卫星,也叫广播卫星,是一种专门化的通信卫星,主要用于电视广播。它由广播转发器和收发天线构成电视广播转发系统,外加保障系统,是运行在地球静止轨道上的太空广播发射台。

    用广播卫星直接向公众转播电视图像和声音信号的广播方式叫做卫星广播。卫星广播通过卫星广播系统来实现,这个系统由广播卫星、地面接收网、上行站和测探站共同组成。

    电视直播卫星采用三轴卫星测控技术,对地定向精度很高,并装备折叠式大面积太阳能电池板,发射功率大,覆盖面积广。通过卫星广播系统,只要在电视机上安装一根小型天线等设备,无需经过电视台转播便可接收直播电视。因此,直播电视为电视教育、医学和医疗活动、文化和体育生活提供很大方便。用这种卫星还可转播电影。例如,由卫星电影公司先将电影的图像用无线电发射至租用的卫星频道上,再由卫星向地面转播。地面上的电影院,如果希望放映卫星电影公司的电影,须向该公司购买“转播密码器”装在自己的接收设备上,这样就可以在自己的大银幕上播出影片。

    电视直播卫星的应用,对个体家庭用户造福很大。特别是和地面电视比较,它具有极大的优越性。首先,它的覆盖面积广大,可以解决一些国家边远地区、山区、海岛和其他地面中继站难以布站、地区电视覆盖困难的提问。现在有了直播电视,那些居住在边远山区的散户,均可在电视机上装上一根小型天线,通过电视,可以和大城市一样放眼看世界了。其次,地面电视台站网传送电视到较远地区往往要经过多次中继转播,广播质量受到严重的影响,而卫星直播电视的转播环节少,且通常采用调频方式,所以接收质量好。

    对地观测卫星

    原来,在千百年的生产活动和生活实践中,我们人类逐渐认识到地球给人类带来的巨大影响。一方面,地球作为人类繁衍生息的场所,毫无保留地为人类提供了得以生存和进行生产活动的各种条件和物质,如矿产资源、粮食作物、森林草场、水产资源等。另一方面,地球也为人类带来巨大的、有时是毁灭性的灾难,如洪水泛滥、火山爆发、地震,以及农作物和森林草场的病虫害等。

    据不完全统计,全世界每年由于各种自然灾害所造成的损失多达上千亿美元。在美国,由于农作物的病害,每年损失约37亿美元,而虫害损失达38亿美元。我国也是一个多灾的国家,不是水灾就是地震,每年也有相当大的损失。

    人类还发现,尽管我们生活在地球上,但是对于地球本身的奥秘,由于我们本身的局限性,加上受技术发展的限制,我们并没有完全认识它,而且只在地球上来研究地球,就像诗人所说,“不识庐山真面目,只缘身在此山中”,因此我们必须寻求一种新的方法,也就是到地球以外去研究探测地球,才能更好地开发和利用地球,进一步为人类造福,减少灾害造成的损失。对地观测卫星就是我们理想的工具,它可以帮助我们真正地了解地球。

    那么,对地观测卫星都有哪些优点呢?对地观测卫星的特点

    (1)速度快。对地观测卫星一般发射到低轨道上飞行,这种卫星围绕地球飞行一圈的时间约90分钟,也就是1?5小时绕地球一圈,取得的信息资料非常及时。

    (2)看得广。对地观测卫星一般的轨道都是大倾角椭圆轨道,甚至可以是通过南北极的极地轨道,所以地球的每个地方都能到达;而且一颗卫星可以覆盖数千万平方千米的地面面积,可以对地球进行非常广泛的普查,尤其在那些人类无法到达的地区,更体现了它的优越性。

    (3)信息量大。对地观测卫星上有各种的观测手段和设备,能够对地球上的各种信息进行全面的探测。

    就拿照相来说,一张照片上可以有各种丰富的内容,比如可以看到森林、山脉、海洋,还可以看到农田、公路、城市、村庄、机场、舰港,可以说无所不有。

    这样,不同的专业部门就可以从中提取不同的专业内容,不必专门为了勘察农业发一颗卫星,勘察矿产再发一颗卫星,从而大大提高了效率,节省了经费,做到了信息的综合利用。

    另外,它不但能观测地表面可见的部分,还可以观测人眼看不见的部分,比如探测地表以下一定的深度范围。

    对地观测卫星的应用领域

    对地观测卫星所取得的信息非常丰富,可以应用于国民经济的各个领域,下面以我国为例,来谈谈它的主要应用:

    (1)万里国土尽收眼底。

    所谓国土,是指一个国家主权范围内的全部陆地、领海及大陆架。包括地上、地下以及空中资源的综合。我国幅员辽阔,物产丰富,有960万平方千米的陆地面积,130多万平方千米的大陆架,其中蕴藏着各种丰富的资源,急需开发利用。近40年来,我国的生态环境发生了明显的变化,一方面,随着城乡建设、农业、渔业的发展,耕地的扩大,带来了繁荣发展的一面。另一方面,有的地方盲目地毁林扩田、围湖造田,加剧了生态的恶化,加速了水土流失,造成了自然灾害增加的趋势。如果用传统的普查方法,我们将会遇到很多困难。尤其是一些高山老林、沙漠沼泽地带,人员难以到达。就是能够到达的地方,靠传统的人工勘测,速度慢、耗资大,这么大的国家要多少时间多少人力啊!利用对地观测卫星飞得高、飞得快、视场大的特点,可以对我国进行全面的大面积的普查,取得各种有用的信息资料。这将为合理开发利用土地

    提问五:广州康普顿化工有限公司怎么样?

    答案:简介:广州康普顿化工有限公司成立于2000年04月03日,主要经营范围为批发和零售贸易(国家专营专控项目除外)等。
    法定代表人:曾令萍
    成立时间:2017-04-19
    注册资本:100万人民币
    工商注册号:4401062018874
    企业类型:有限责任公司(自然人独资)
    公司地址:广州市番禺区大石街105国道大石段582、584号4A16

    提问六:康普顿是不是要倒闭了,怎么跌成这样了

    答案:

    股票代码603798
    很正常啊,多数股票近两年表现都不好
    特别是这类近年上市公司
    还会继续低位震荡,观望


    关于《康普顿区域,康普顿股票公司简介》的相关问题及解答

    股票分红可以不缴税吗


    答:不可以不缴税,股票分红是必须缴税的。股息红利所得按持股时间长短实行差别化个人所得税政策。持股超过1年:税负5%;持股1个月至1年:税负10%;持股1个月以内:税负20%。由此可见,股票分红要缴多少税,是需要看股票的持有时间的。



    股票折价是什么意思


    答:股票折价分为折价发行和折价成交。

     

    折价发行是指以低于面额的价格出售新股,即按面额打一定折扣后发行股票,折扣的大小主要取决于发行公司的业绩和承销商的能力。

     

    折价成交就是成交价低于市面价值,比如你有一座大楼值100万,我想买,你用98万的价格卖给我,这就是折价成交。



    康普顿区域,康普顿股票公司简介  第2张

    关于《康普顿区域,康普顿股票公司简介》的相关评论

    网友评论一


    boy付发恩:感谢作者的分享,读完《康普顿区域,康普顿股票公司简介》之后,深有感触。



    网友评论二


    只见红不见绿:作为一个新手,连股票K线图都不会看,希望大神指导一下。



    网友评论三


    阿森纳:谢谢分享,看完文章《康普顿区域,康普顿股票公司简介》,进步不少,作者多多分享内容吧。


    看完本文之后,你是否学习到新的知识?想要学习炒股、基金或者期货等投资知识,敬请关注我们的网站,大众财富网为你带来实用的投资干货技巧。



    本文章《康普顿区域,康普顿股票公司简介》来源于互联网资料整合,由大众财富网(https://www.shzcbc.cn/)发布,如何有任何侵权行为,请立即联系我们删除!谢谢大家合作!最后提醒各位投资者,股票投资有风险,投资需谨慎!


    本文关键词:康普顿区域,康普顿股票公司简介

    有话要说...

    • 157人参与,2条评论
    • 小弟小弟  2022-05-09 21:12:41  回复
    • 是一位研究X射线的专家,路易斯曾随莫里斯一道研究X射线,两人经常讨论有关的理论提问。莫里斯曾在1911年第一届索尔威会议上担任秘书,负责整理文件。这次会议的主题是关于辐射和量子论。会议文件对路易斯有很大启
    • 小毕小毕  2022-05-10 02:25:17  回复
    • A上,从A发出的二次辐射又以45°角投向散射物B,再从垂直于二次辐射的各个方向观察三次辐射,发现强度有很大变化。沿着既垂直于入射射线又垂直于二次辐射的方向强度最弱。由此巴克拉得出了X射线

    随机文章

    取消
    扫码支持 支付码